Effect of Leaving Group in γ -Elimination Reactions

By CARL L. BUMGARDNER

(Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27607, U.S.A.)

CONTINUING our study of the competition between β - and γ -elimination reactions,¹ we examined the effect of changing the leaving group, X, on the mode of reaction of 3-phenylpropyl derivatives with sodium amide in liquid ammonia.

$$\begin{array}{ccc} \mathrm{Ph}\cdot\mathrm{CH}_{2}\cdot\mathrm{CH}_{2}\cdot\mathrm{CH}_{2}\cdot\mathrm{X} & - & \stackrel{k\beta}{\longrightarrow} & \mathrm{Ph}\cdot\mathrm{CH}_{2}\mathrm{CH}=\mathrm{CH}_{2} \\ & & & & \\ & & & \\ & & & &$$

Table I summarizes the results.

TABLE I		
Effect of Leaving Group		
Nature of Group	Hydrocarbon Products	Type Elimination
X = Br X = Cl	Diphenylhexenes Phenylcyclopropane + Diphenylhexenes	$eta(+ alkylation) \ \gamma \ + eta(+ alkylation)$
X = F X = OTs $X = N^+Me_3$	Phenylcyclopropane Phenylcyclopropane Phenylcyclopropane	y y y y

Under the reaction conditions, 3-phenylpropyl bromide gives no phenylcyclopropane but a mixture of diphenylhexenes which arise by a sequence beginning with β -elimination followed by alkylation of the sodium salt of propenylbenzene.² In contrast, 3-phenylpropyl fluoride, tosylate, and trimethylammonium iodide yield exclusively phenylcyclopropane. From 3-phenylpropyl chloride a mixture of the diphenylhexenes and phenylcyclopropane is obtained. The products were separated by distillation and gas-phase chromatography and characterized by infrared, ultraviolet, and nuclear magnetic resonance spectra.

The fact that the $k\beta/k\gamma$ ratio decreases in the order Br > Cl > F leads us to suggest that $k\beta$ is more sensitive to the leaving group than is $k\gamma$. Thus, with the easily polarizable bromine atom, β -elimination is promoted more than γ -elimination; whereas with the non-polarizable fluorine atom, both β - and γ -eliminations are slowed, but the former process is slowed to a greater extent. The poorer leaving groups, F and N+Me₃, therefore, are to be used when γ -elimination is desired.

Particularly noteworthy is the position of tosylate, normally a good leaving group, which joins F and N+Me₃ as a group favouring γ elimination. This result may be another manifestation of the resistance of tosylate to undergoing β -elimination^{3,4} or an example of an unusually facile (possibly concerted) γ -elimination.

$$\begin{array}{c|c} \operatorname{PhCH}_{2} \cdot \operatorname{CH}_{2} \cdot \operatorname{Br} & \xrightarrow{\beta \cdot \operatorname{elim.}} & \operatorname{PhCH}_{2} \cdot \operatorname{CH} = \operatorname{CH}_{2} & \xrightarrow{\operatorname{NaNH}_{2}} & \operatorname{PhCH} \cdot \operatorname{CH} \cdot \operatorname{CH} \\ (\operatorname{Cl}) & & & & \\ \end{array} \\ \end{array}$$

Diphenylhexenes

(Received, July 12th, 1965; Com. 439.)

¹ C. L. Bumgardner, J. Org. Chem., 1964, 29, 767 and references cited therein.

² This sequence and the mixture of diphenylhexenes will be discussed in detail in the full paper.

- ⁹ H. M. Walborsky and C. G. Pitt, J. Amer. Chem. Soc., 1962, 84, 4831.
 ¹ P. Veeravague, R. T. Arnold, and E. W. Eigenmann, J. Amer. Chem. Soc., 1964, 86, 3072.